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Abstract

This paper addresses one of the fundamental problems en-
countered in performance prediction for object recognition.
In particular we address the problems related to estimation
of small gallery size that can give good error estimates and
their confidences on large probe sets and populations. We
use a generalized two-dimensional prediction model that
integrates a hypergeometric probability distribution model
with a binomial model explicitly and considers the distor-
tion problem in large populations. We incorporate learning
in the prediction process in order to find the optimal small
gallery size and to improve its performance. The Chernoff
and Chebychev inequalities are used as a guide to obtain
the small gallery size. During the prediction we use the
expectation-maximum (EM) algorithm to learn the match
score and the non-match score distributions (the number of
components, their weights, means and covariances) that are
represented as Gaussian mixtures. By learning we find the
optimal size of small gallery and at the same time provide
the upper bound and the lower bound for the prediction
on large populations. Results are shown using real-world
databases.

1. Introduction
Recognition systems can classify images, signals or other
types of measurements into a number of classes. In this
paper we mainly focus on biometric recognition systems.
Biometrics can be fingerprint, palm, face, gait, signature
or speech. Usually a biometric recognition system consists
of three stages: image acquisition, feature extraction and
matching. Distortion often occurs in these stages and is
caused by sensor noise, feature uncertainty, feature occlu-
sion, and feature clutter.

Before we can evaluate the performance of a recogni-
tion algorithm on large populations we need to answer some
fundamental questions. Since the algorithm performance of
recognition systems is usually based on limited data, it’s dif-
ficult to estimate this performance for additional data: the
limited test data may, after all, not accurately represent the
larger population. When we use a small gallery to estimate
the algorithm performance on large populations how can we
find the optimal size of the small gallery and how accurate
is the estimation? Since the prediction is based on the same
recognition algorithm, we can give the confidence interval
for the performance estimation of the large population [1].
The confidence interval can describe the uncertainty asso-
ciated with the estimation. This gives an interval within
which the true algorithm performance for the large popula-

tion is expected to fall, along with the probability that it is
expected to fall there [2]. Guyon et al. [1] propose guaran-
teed estimators to determine the test size for the indepen-
dent identical distribution recognition error and the corre-
lated recognition error, along with the assumption of the
underlying probability distribution.

Grother et al. [3] introduce the joint density function of
the match score and the non-match score to estimate both
the open-set and the closed-set identification performance.
They assume that the match score and the non-match score
are independent and their distributions are the same for
large populations.

Estimation of the match score and the non-match score
distributions are very important for prediction. Grother et
al. [3] use the Monte Carlo sampling method to linearly in-
terpolate the match score and the non-match score lookup
tables. Johnson et al. [4] use the count method to compute
the error probability for a given match score.

In this paper we use a generalized prediction model that
integrates a hypergeometric probability distribution model
explicitly with a binomial model which takes into account
distortion that may occur in large populations. The predic-
tion model provides performance measurements as a func-
tion of rank, large population size, the number of distorted
images, and similarity score distributions. While we use
the expectation-maximum (EM) algorithm to estimate the
match score and the non-match score distributions, we in-
troduce learning to feed back similarity scores to increase
the small gallery size. In this way we can find the opti-
mal size of the small gallery to predict the large popula-
tion performance. Meanwhile, we provide upper and lower
bounds for the prediction performance for the large popula-
tion. In this paper we use two different statistical methods–
Chernoff’s inequality and Chebychev’s inequality–to obtain
the relationship between the small gallery size and the con-
fidence interval given a margin of error.

Our paper is organized as follows. Contributions are pre-
sented in section 2. In section 3 we describe the details of
the integrated model, the procedure of learning for similar-
ity score distributions in the prediction, and the statistical
methods to find the optimal sample size. Experimental re-
sults are shown in section 4. The integral model with learn-
ing is tested on the NIST-4 fingerprint database. Conclu-
sions are given in section 5.

2. Contributions
1) We use a generalized prediction model that integrates
a hypergeometric probability distribution model explicitly
with a binomial model which takes into account any dis-
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tortion that may occur in large populations. Our distortion
model includes feature uncertainty, feature occlusion and
feature clutter. In the prediction model we use the EM algo-
rithm to estimate match score and non-match score distri-
butions and find the number of components automatically.
For each component we can get its mean, covariance, and
weight which represent the underlying Gaussian mixture
model. For a subset of the biometric database if the error
between the prediction and the actual performance is larger
than a margin of error then we feedback the similarity scores
to the EM algorithm until the error is smaller than the mar-
gin of error.

2) By learning we can find the optimal size of a small
gallery, and at the same time we can give the upper bound
and the lower bound for a large population prediction. We
use the Chernoff inequality and the Chebychev inequality
to determine the small gallery size which is related to the
margin of error and the confidence interval. Then we can
give the confidence interval for the prediction performance.

3) The results are shown on a large data set of fingerprint
images.

3. Technical Approach
Figure 1 provides the conceptual diagram of our sys-
tem. For a given biometric recognition system whose
size is M , we randomly pick n images to be our small
gallery. By identification we can get a set of match scores
and non-match scores for this small gallery. Then we
use the expectation-maximization (EM) algorithm to esti-
mate distributions of the match score and the non-match
score. Based on these distributions we use our prediction
model which integrates a hypergeometric probability distri-
bution model explicitly with a binomial model to estimate
the recognition system performance for a large population
whose size is M1 where M1 < M . We assume the predic-
tion performance on M1 is p̂. From the recognition system
we can obtain the match score and the non-match score for
M1, then compute the actual recognition performance p for
M1. ẽ is the error between the prediction performance and
the actual performance, where ẽ = |p̂ − p|. If ẽ is larger
than the margin of error e then we feed back match scores
and non-match scores to the EM algorithm to estimate the
similarity score distributions again. Otherwise we increase
M1, the size of the large population, and repeat this process
until the M1 increases to M . We will explain each part of
the diagram in detail in this section.

3.1. Prediction Model
Our two-dimensional prediction model considers the distor-
tion problem which conforms with reality. Assume we have
two kinds of different quality biometric images, group #1
and group #2. Group #1 is a set of good quality biometric
images without distortion. Group #2 is a set of poor qual-
ity biometric images with distortion. In general, the size of
these two groups are n1 pairs and n2 pairs. We randomly
pick n pairs of images from group #1 and group #2. Then
the pair number of distorted images y which are chosen
from group #2 should follow the hypergeometric distribu-
tion

f(y) =
Cn1

n−yCn2
y

Cn1+n2
n

(1)
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Figure 1: Diagram of the prediction system

where n1 + n2 is the total number of images in these two
groups and n−y is the number of images chosen from group
#1.

These n pairs of images are our small gallery. We split
them into the gallery and the probe set. For each image in
the probe set we compute the similarity scores with every
image in the gallery. Then we have one match score and
n − 1 non-match scores for this image. Here we assume
that the match score and the non-match score are indepen-
dent. With these similarity scores we can use the EM algo-
rithm to estimate the match score and the non-match score
distributions.

From above we know that the similarity score distribu-
tions depend not only on the similarity scores but also on
the number of images with distortion. Here we assume
ms(x|y) and ns(x|y) represent the distributions of match
scores and non-match scores given the number of distorted
images. Assume if the similarity score is higher then the
biometrics are more similar. The error occurs when a given
match score is smaller than the non-match score. For a
given number of distorted images the probability that the
non-match score is greater than or equal to the match score
x is NS(x) where

NS(x) =
∫ ∞

x

ns(t|y)f(y)dt (2)

Then the probability that the non-match score is smaller
than the match score is 1 − NS(x).

Here we assume that the similarity score distributions are
similar for the small gallery and the large population. If the
size of the large population is N , then for the jth image
we can have a set of similarity scores, which includes one
match score and N−1 non-match scores. We rank the simi-
larity scores in decreasing order. Then for a given number of
images with distortion the probability that the match score x
is at rank r is given by the binomial probability distribution

CN−1
r−1 (1 − NS(x))N−r

NS(x)r−1 (3)

Integrating over all the match scores, for a given number of
images with distortion the probability that the match scores
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are at rank r can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r
NS(x)r−1

ms(x|y)dx (4)

We integrate over all the number of images chosen from
group #2, the probability that the match scores are at rank r
can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r
NS(x)r−1

n∑
y=0

ms(x|y)f(y)dx (5)

In theory the match scores can be any values within
(−∞,∞). We get the probability that the match scores are
within rank r is

P (N, r) =
r∑

i=1

∫ ∞

−∞
CN−1

i−1 (1 − NS(x))N−i
NS(x)i−1

n∑
y=0

ms(x|y)f(y)dx (6)

Given that the correct match takes place above a threshold
t, the probability that the match score is within rank r be-
comes

P (N, r, t) =
r∑

i=1

∫ ∞

t

CN−1
i−1 (1 − NS(x))N−i

NS(x)i−1

n∑
y=0

ms(x|y)f(y)dx (7)

When rank r = 1 then the prediction model with threshold
t becomes

P (N, 1, t) =
∫ ∞

t

(1 − NS(x))N−1
n∑

y=0

ms(x|y)f(y)dx (8)

In this model we make two assumptions: match scores
and non-match scores are independent and large popula-
tions have distortion. In this model N is the size of the
large population whose performance needs to be estimated.
A small sized gallery is used to estimate distributions of
ms(x|y) and ns(x|y) .

3.2. Expectation-Maximization Algorithm
The EM algorithm is an iterative method to estimate the
likelihood given good data [5]. We assume that the data dis-
tribution is a c-component mixture model C = C1, · · · , Cc,
whose distribution can be written as

f(x) =
c∑

i=1

πifi(x) (9)

where x is d-dimensional data, fi(x) are component den-
sities and πi are component proportions. The compo-
nent densities are specified by the parameter vector θ =

(θ1, · · · , θc). Let the vector Ψ contain all the unknown pa-
rameters in the mixture model

Ψ = (π1, · · · , πc−1, ξ
T )T (10)

where ξ contains all the parameters in θ1, · · · , θc. Here
we rewrite (9) as

f(x; Ψ) =
c∑

i=1

πifi(x; θi) (11)

Given a set of N independent and identical distribution
samples χ = {x1, · · · , xN} from equation (11), the max-
imum likelihood (ML) estimation of the unknown parame-
ter vectors θi can be obtained by the EM algorithm. We set
the associated binary component-indicator vectors for χ as
Z = {z1, · · · , zN}, which is associated with the N samples
and indicates which component produces these samples. zji

means sample xj is produced by the ith component. The
complete data log-likelihood function is given by

logL(χ, Z; Ψ) =
N∑

j=1

c∑
i=1

zjilog[πifi(xj ; θi)] (12)

The EM algorithm produces a sequence of estimations
Ψ̂(k) by proceeding iteratively in two steps (the E-step and
the M-step) until some termination criterion is met.

(1) E-step: Defines the conditional expectation of Z,
whose elements are defined as τji = EΨ̂(k)(zji|χ). By the
Bayesian theory, it can be derived as

τji =
π

(k)
i fi(xj ;

ˆ
θ
(k)
i )∑c

h=1 π
(k)
h fh(xj ;

ˆ
θ
(k)
h )

(13)

(2) M-step: Updates the estimation of Ψ by

Ψ̂(k + 1) = argmaxΦ(Ψ; Ψ̂(k)) (14)

The updated expression for the component is

π
(k+1)
i =

∑N
j=1 τ

(k)
ji

N
(i = 1, · · · , c) (15)

When c is unknown, we can select the value of c according
to some criterion function,

ĉ = argmaxΥ(Ψ̂c, c), c ∈ cmin, · · · , cmax (16)

where Ψ̂c is the mixture parameter estimation when the
model is assumed to contain c components. The criterion
function Υ(Ψ̂c, c) usually consists of two terms as log-
likelihood of the data for the model and the penalty func-
tion.
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3.3. Determine the Small Gallery Size
In this section we discuss the relationship between the con-
fidence interval and the small gallery size. We use limited
data to estimate the large population performance. There-
fore the prediction value may be significantly accurate or
not. This question can be mathematically expressed as

P{|(p − p̂)| > e} ≤ (1 − α) (17)

Where p̂ is the predicted performance for the recognition
system which can be obtained from our prediction model,
p is the actual performance of the recognition system, e is
the margin of error for the system, and α is the confidence
interval. Then inequality (17) can be written as

P{p > p̂ + e} ≤ (1 − α) (18)

or

P{p < p̂ − e} ≤ (1 − α) (19)

Here we consider inequality (18) since inequality (19) is
symmetric with inequality (18).

We assume that a recognition system recognizes biomet-
rics with the probability P{Xi = 1} = p and P{Xi =
0} = 1 − p, where Xi = 1 means biometrics Xi is
recognized correctly, Xi = 0 means the opposite. Ac-
cording to the Chernoff inequality [6], let X1, X2, · · · , Xn

be independent random variables. For any Xi, we have
P{Xi = 1} = p and P{Xi = 0} = 1 − p, where
0 < p < 1. We define the random variable

X =
1
n

n∑
i=1

Xi (20)

For any t ≥ 0 we have:

P{X ≥ E(X) +
t

n
} ≤ e−

2t2
n (21)

Comparing with inequality (18), we can get

1 − α = e−
2t2
n (22)

So,

t =

√
−nln(1 − α)

2
(23)

Thus, equation (21) becomes

P{X ≥ E(X) +

√
− ln(1 − α)

2n
} ≤ α (24)

From inequality (18), we know that

e =

√
− ln(1 − α)

2n
(25)

Thus, we get

n =
−ln(1 − α)

2e2
(26)

In the above we assume that the recognition system can
recognize biometrics with a certain distribution. If we do
not know the underlying distribution of the recognition sys-
tem then we can use the Chebychev inequality [6] which
is distribution independent. Assume X1, X2, · · · , Xn are
independent random variables defined as

X =
1
n

n∑
i=1

Xi (27)

For any ε ≥ 0, we have

P{|X − E(X)| ≥ ε} ≤ σ2

nε2
(28)

Then we have

1 − α =
σ2

nε2
(29)

From the above equation we obtain

ε =
σ√

n(1 − α)
(30)

From equations (28), (29), and (30) we have

P{X ≥ E(X) +
σ√

2n(1 − α)
} ≤ (1 − α) (31)

Then

e =
σ√

2n(1 − α)
(32)

So we have

n =
σ2

2(1 − α)e2
(33)

We know that the Chernoff inequality is much tighter
than the Chebychev inequality and the Chebychev inequal-
ity is distribution independent. From the above equations
(33) and (26), we obtain the relationship between the small
gallery size and the confidence interval given the margin of
error.

In the above we give the small gallery size from math-
ematics. Meanwhile in our approach we incorporate the
process of learning for similarity score distributions to find
the optimal size of the small gallery. Also we can provide
the upper bound and the lower bound for the performance
prediction on the large population.

4. Experimental Results
In all the experiments we use fingerprints from the NIST
Special Database 4 (NIST-4). It consists of 2000 pairs of
fingerprints. Each of them is labeled with an ID number
preceded by an ‘f’ or an ‘s’ which represents different im-
pressions of the same fingerprint. The images are collected
by scanning inked fingerprints from paper. The resolution
of the fingerprint image is 500 DPI and the size of the image
is 480 × 512 pixels.
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4.1. Distorted Data
Usually the minutiae features are used for the fingerprint
recognition which can be expressed as f = (x, y, c, d),
where x and y are the locations of the minutiae, c is the class
of the minutiae, and d is the direction of the minutiae. We
define the percentage of the minutiae with distortion for one
fingerprint as g. Here we choose g = 5%. Assume the num-
ber of minutiae is numj . Usually one pair of fingerprints
has a different number of minutiae so j = 1, 2, · · · , 4000.
We apply the distortion model [7] to these 2000 pairs of
fingerprints as follows:

(a) Uncertainty: Uniformly choose U = 5% × numj

minutiae features out of numj features and replace each
fi = (x, y, c, d) with f

′
i chosen uniformly at random from

the set

{(x′, y′, c′, d′), (x′, y′) ∈ 4NEIGHBOR(x, y),
c′ = c ± 1, d′ = d ± 3◦}

where i = 1, 2, · · · , U .
(b) Occlusion: Uniformly choose O = 5% × numj

minutiae features out of numj features and remove these
minutiae.

(c) Clutter: Add C = 5% × numj additional minutiae,
where each minutiae is generated by picking a feature uni-
formly at random from the clutter region. Here we choose
the clutter region as

CR = {(x, y, c, d), 50 ≤ x ≤ 450, 60 ≤ y ≤ 480,

c = {0, 1, 2, 3, 4}, 10◦ ≤ d ≤ 350◦}
In our experiments we use the uniform distribution as the
uncertainty PDF and the clutter PDF . The number of
features with uncertainty, occlusion, and clutter is the same.
We use the algorithm provided in [8] to extract minutiae and
algorithm [9] for matching.

4.2. Estimate Distributions
In our experiments the EM algorithm is used to estimate
the match score distribution and the non-match score dis-
tribution. The EM algorithm can find the number of com-
ponents automatically [10] and for each component the EM
algorithm can get its mean, covariance, and weight. In the
learning process we feed back match scores and non-match
scores to the small gallery. Then according to these differ-
ent similarity scores the EM algorithm gives us a different
estimation of distributions. Table 1 shows the estimation
of the match score distribution with different number of the
small gallery size. The distributions are represented by the
Gaussian mixture model. For each component we have its
mean, covariance, and weight. Figure 2 shows the match
score distribution curves on different small gallery sizes.

4.3. Prediction Results
We randomly choose 50 pairs of fingerprints from finger-
print pairs of two levels of quality (high and low) as our
small gallery following a hypergeometric distribution. We
can get 50 match scores and 2450 non-match scores. Af-
ter we obtain these similarity scores we use the EM algo-
rithm to estimate the match score distribution and the non-
match score distribution. Then we choose the subset size

Table 1: Match score distribution estimated by the EM al-
gorithm.

Size Component # Mean Covariance Weight
100 2 17.152658 334.452802 0.535764

299.015489 55459.580193 0.450296
200 5 57.348298 1026.825771 0.160830

3.615611 20.189071 0.362406
585.278037 66686.529667 0.151087
206.327514 7334.980411 0.191394
27.106400 131.423073 0.133465

300 4 3.581775 21.569950 0.395165
420.142835 64933.952657 0.236481
35.420091 423.267100 0.228275

143.774430 3016.000039 0.139634
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Figure 2: Match score distributions for different small
gallery sizes.

M1 = 100. We use 50 fingerprint pairs to predict the recog-
nition performance for this subset. Here we set the mar-
gin of error e = 0.06. The prediction result is showed in
Figure 3. From this curve we see that for the large popula-
tion size 100 the error between the prediction performance
and the actual performance is 0.137 which is larger than the
margin of error.
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Figure 3: Absolute error between the prediction and the ac-
tual performance when the small gallery size is 50.

Now we apply learning to the prediction process. Fig-
ure 4 shows the error between the prediction and the ac-
tual performance decreases when the gallery size increases.
When the small gallery size n = 300 the absolute error is
smaller than the margin of error. At this point we can stop
learning. We randomly feed back match scores from se-
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lected fingerprint pairs and repeat this process seven times.
Then we pick the maximum and the minimum prediction
performance as our upper bound and lower bound for the
prediction on the large population. Figure 5 gives the upper
bound and the lower bound on the large population perfor-
mance prediction. Since we have 2000 pairs of fingerprints,
our actual recognition performance is shown in Figure 5.
Beyond this population size we can give the bounds for the
prediction. From Figure 5 it can be seen that the actual per-
formance is within the upper bound and the lower bound
except when the population size is very small. Our experi-
ments show that when the small gallery size n = 300 then
the prediction error is less than 5%.
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Figure 4: Absolute error between the prediction and the ac-
tual performance for different small gallery sizes.

500 1000 1500 2000 2500 3000 3500 4000
0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Population size

P
ro

b
ab

ili
ty

 o
f 

C
o

rr
ec

t 
R

ec
o

g
n

it
io

n

Actual performance
Upper bound
Lower bound
Prediction

Figure 5: The upper bound and the lower bound on the large
population when the small gallery size is 300. Note that the
upper bound and the lower bound are within 5%.

Table 2: Values of the confidence interval, the margin of
error, and the small gallery size

1-α -ln(1 − α) e n
0.05 2.996 0.06 417
0.05 2.996 0.04 937
0.1 2.303 0.06 320
0.1 2.303 0.04 720

0.15 1.8971 0.06 264
0.15 1.8971 0.04 593

Since the Chernoff inequality is much tighter than the
Chebychev inequality, we compare our learning small
gallery size with the Chernoff inequality. Table 2 shows
that the different confidence interval and the margin of er-
ror gives different small gallery size. From the table we

ascertain that when the confidence interval α = 95%, mar-
gin of error e = 0.06 then the small gallery size n = 416.
From our experiment for the same margin of error our
small gallery size is 300. And the confidence interval is
α = 97.5%. Statistical methods are independent of data
which can give us a loose estimation of the small gallery
size. Based on our own recognition system we can find the
more accurate small gallery size by learning.

5. Summary and Conclusions
We focus on the fundamental problem of performance pre-
diction for object recognition: what is the optimal size of the
small gallery that can give good error estimation and how
confident is the estimation. We use a generalized predic-
tion model that integrates a hypergeometric probability dis-
tribution model with a binomial model explicitly and takes
into account distortion in large populations. We incorporate
learning in the prediction process to find the optimal small
gallery size and provide the upper bound and the lower
bound for the performance prediction on large populations.
Meanwhile the Chernoff inequality and the Chebychev in-
equality are used as a guide to obtain the small gallery size
and the confidence interval given a margin of error. Ex-
perimental results show that the small gallery size from the
statistical methods are more loose than the learning method.
Using a sufficient small gallery size we improve the predic-
tion performance on the large population.
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